首页> 外文OA文献 >First passage process of a Markov additive process, with applications to reflection problems
【2h】

First passage process of a Markov additive process, with applications to reflection problems

机译:马尔可夫加成过程的第一次通过过程,应用于   反思问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we consider the first passage process of a spectrally negativeMarkov additive process (MAP). The law of this process is uniquelycharacterized by a certain matrix function, which plays a crucial role influctuation theory. We show how to identify this matrix using the theory ofJordan chains associated with analytic matrix functions. Importantly, ourresult also provides us with a technique, which can be used to derive variousfurther identities. We then proceed to show how to compute the stationarydistribution associated with a one-sided reflected (at zero) MAP for both thespectrally positive and spectrally negative cases as well as for the two sidedreflected Markov-modulated Brownian motion; these results can be interpreted interms of queues with MAP input.
机译:在本文中,我们考虑了光谱为负的马尔可夫加成过程(MAP)的第一次通过过程。该过程的定律以某个矩阵函数为唯一特征,它在影响理论中起着至关重要的作用。我们展示了如何使用与解析矩阵函数相关的约旦链理论来识别该矩阵。重要的是,我们的结果还为我们提供了一种技术,可用于导出各种其他身份。然后,我们继续说明如何针对光谱正和光谱负情况以及两侧反射马氏调制布朗运动计算与单面反射(零)MAP相关的平稳分布。这些结果可以解释为带有MAP输入的队列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号